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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE 2832 

THEORETICAL STUDY OF THE TRANSONK  LIFT OF A DOUBIE-WELGE' 

PROFILE WITH DETACHED BOW WAVE X 

By Walter G. Yincenti and Cleo B. Wagoner 

SUMMARY 

A theoretical study is described of the aerodynamic characteristics 
at small angle of attack of a thin, double-wedge profile in the range 
of supersonic flight speed in which the bow wave is detached.  The 
analysis is carried out within the framework of the transonic (nonlinear) 
small-disturbance theory, and the effects of angle of attack are regarded 
as a small perturbation on the flow previously calculated at zero angle. 
The mixed flow about the front half of the profile is calculated by 
relaxation solution of a suitably defined boundary-value problem for the 
transonic small-disturbance equation in the hodograph plane (i.e., the 
Tricomi equation).  The purely supersonic flow about the rear half is 
found by an extension of the usual numerical method of characteristics. 
Analytical results are also obtained, within the framework of the same 
theory, for the range of speed in which the bow wave is attached and the 
flow is completely supersonic. 

The calculations provide, for vanishingly small angle of attack, 
the following information as a function of the transonic similarity 
parameter: (l) chordwise lift distribution, (2) lift-curve slope, and 
(3) position of center of lift. As in previous studies, the aerodynamic 
characteristics of a profile of given thickness ratio show little varia- 
tion with free-stream Mach number as the Mach number passes through 1. 
As the Mach number is increased to higher values, however, the lift- 
curve slope rises to a pronounced maximum in the vicinity of shock 
attachment and then declines.  Correspondingly, the center of lift moves 
forward toward the leading edge and then returns aft.  These findings 
are in marked contrast to the behavior of the drag coefficient at zero 
angle of attack, which was found in earlier work to decrease monotoni- 
cally as the Mach number increased above 1. At Mach numbers above that 
for shock attachment, the results of the present calculations tend toward 
those given by classical linear theory.   ' '     

Portions of this work were reported at the VHIth International 
Congress on Theoretical and Applied Mechanics, Istanbul, Turkey, 
August 20-28, 1952. 
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INTRODUCTION 

The theoretical problem of the transonic flow over a thin, double- 
wedge profile at zero angle of attack has been treated in several papers 
in recent years.  These papers have in common that they employ the 
simplifying concepts of the transonic small-disturbance theory and 
utilize the hodograph transformation to linearize the resulting mathe- 
matical problem. Following this approach, Guderley and Yoshihara 
(reference l) began "by solving the problem for a free-stream Mach 
number of 1, using analytical methods for the mixed flow over the front 
wedge and the method Of characteristics for the purely supersonic flow 
over the rear. Somewhat later, the present authors, using a combina- 
tion of relaxation methods and the method of characteristics (refer- 
ences 2 and 3)> extended the results to free-stream Mach numbers greater 
than 1, where a detached how wave occurs ahead of the profile. At about 
the same time, Cole (reference k)  obtained an analytical solution for 
the flow over the front wedge at subsonic flight speeds, utilizing, in 
effect, the special assumption of a vertical sonic line from the 
shoulder of the wedge. More recently, Trilling (reference 5) has been 
able to remove this special assumption and, with the aid of less strin- 
gent approximations regarding the flow over the rear wedge, to extend 
the solution for the subsonic case to include the complete profile. As 
a result of these investigations, the problem of the double-wedge 
profile at zero angle of attack may be regarded as substantially solved 
within the limitations of the transonic small-disturbance theory.  The 
experimental studies of Liepmann and Bryson (references 6 and 7) and 
Griffith (reference 8) indicate that the theoretical findings are in 
fundamental agreement with the physical facts. 

In a recent paper (reference <?)> Guderley and Yoshihara have con- 
tinued their investigations of the double-wedge profile at Mach number 1 
by considering the influence of a vanishingly small angle of attack. 
The basic idea in this later work is to regard the effects of angle of 
attack as a first-order perturbation on the nonlinear flow previously 
calculated at zero angle.  This approach leads to a linear boundary- 
value problem in both the physical and hodograph planes.  The calcula- 
tion for the front wedge is still carried out, however, in the hodograph 
plane, since the basic procedures can then be taken over directly from 
the previous work. By this means, Guderley and Yoshihara obtain results 
for the lift-curve slope of the profile at zero angle of attack and for 
the corresponding distribution of lift along the chord. 

The aim of the present paper is to extend the results for the 
double wedge at angle of attack to the case of supersonic flight with 
detached bow wave.  The fundamental ideas of Guderley and Yoshihara are 
followed in reducing the calculations for the front wedge to a perturba- 
tion problem in the hodograph plane. The detailed formulation of the 
problem is, however, necessarily different in the present case.  The 
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"boundary conditions for the problem appear in terms of the results 
already obtained at zero lift (references 2 and 3),  and the solution is 
carried out by numerical methods which differ only slightly from those 
devised for the earlier work.  The lift on the rear wedge is calculated 
by an extension of the method of characteristics.  The body of the 
paper is devoted to the detailed formulation of the boundary-value 
problem in the hodograph plane and to a discussion of the final results. 
Noteworthy differences between the numerical procedures used in the 
present work and those already described in reference 3 are treated in 
appendices at the end of the report. 

NOTATION 

Primary Symbols 

critical speed (i.e., speed at which the speed of flow and 
the speed of sound are equal) 

numerical coefficient 
(See equations (39) and (ko).) 

airfoil chord 

lift coefficient (lift Per unlt sPanN) 

cm     moment coefficient for moments taken about leading 
,  (  moment per unit span ] 

xo 

pressure coefficient 
(^) 

Iw     integral defined by equation (45) 

k2     numerical constant 
(See equation (10).) 

M     Mach number 

m      slope of segment of Mach line in characteristics net 

p      static pressure 
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Ap       local lifting pressure (i.e., difference between static 
pressures on upper and lower surfaces) 

q dynamic pressure 

t airfoil thickness 

V speed of flow    , 

x,y Cartesian coordinates 

X,Y       generalized Cartesian coordinates 
(See equations (43).) - 

chordwise position of center of lift 

&■'„- 
slope of curve of lift coefficient versus true angle of 

o-=o     attack evaluated at zero angle 

Acm\ 
\cLa/= 

slope of curve of moment coefficient versus true angle of 
a-°     attack evaluated at zero angle 

a normalized angle of attack; also denotes true angle of 
dci 

attack when used in derivatives such as  , etc. 
da. 

ß absolute value of T) at left-hand limit of lattice 

7 ratio of specific heats (1.4 for air), ' 

A        basic lattice interval 

£ function of r\  and 0 
(See equation (A6).) 

«*» 
TUT       normalized speed of flow 

(See equation (la) and page 10.) 

'!]Xf'<]2 special values of i) 
(See sketch (m) on page 46•) 

0,0       normalized inclination of flow; 0 also denotes true inclina- 
tion of flow in equation (lb) 
(See equation (lb) and page 10.) 

0w        normalized half angle of wedge 

£0        transonic similarity parameter 
(See equation (13).) 
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p     fluid density 

i|r     stream function 

S^   incremental values of stream function 
(See equations (A9) and (All).) 

Subscripts 

a,b,c  points in characteristics net 
(See page page ^3«) 

A,B    components of total stream function 
(See equation (39).) 

o     conditions in free stream 

s     singular solution 
(See equations (A6) and (A7).) 

0,1,2, value at a prescribed lattice point 
etc. 

*     conditions at critical speed 

Superscripts 

( )    quantities determined at zero angle of attack 

( )'   derivative with respect to normalized angle of attack 
evaluated at zero angle 
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BOUNDARY-VALUE PROBLEM IN HODOGRAPH PLANE 

Description of Flow Field 

Sketch (a) is a drawing of the idealized, inviscid flow which 

Shock wave 
Streamline 
Sonic line 

Expansion    "1 Mach 
Compression] lines 

Mo>l 

may be expected about a wedge profile when the angle of attack is 
sufficiently less than the semiapex angle of the wedge.  Sketch (b) 

Sketch (b) 
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shows the corresponding hodograph representation of the flow over the 
front wedge, which is the region of prime theoretical concern. Except 
for the substitution of the detached how wave in place of the infinite 
free stream, these representations follow the lines assumed by Guderley 
and Yoshihara in reference 9.  The corresponding drawings for zero angle 
of attack, which are fundamental to the present case, have been described 
in detail in references 2 and 3. 

In the present example, the path of the central streamline in the 
physical and hodograph planes is briefly as follows: The streamline 
leaves the bow wave in the physical plane (or the shock polar in the 
hodograph plane) at point A. It then proceeds with decreasing subsonic 
speed to a stagnation point 0 on the underside of the profile. At 0 
the streamline branches.  The lower branch runs downstream along the 
lower surface of the profile with fixed inclination but increasing 
speed.  The sonic speed is reached at the shoulder L, where the speed 
then increases discontinuously in accord with the Prandtl-Meyer rela- 
tions. The shoulder itself maps in the hodograph onto the upgoing 
characteristic LM. The upper branch of the central streamline proceeds 
from 0 upstream along the surface of the profile. The inclination here 
is again fixed by that of the surface, and the speed increases to the 
sonic value at the leading edge J. At this point the flow is charac- 
terized by another Prandtl-Meyer expansion to supersonic speed. 

The flow configuration which should be assumed on the upper surface 
near the leading edge is open to conjecture. Since the geometrically 
available angle of turn will, for any thin airfoil, be greater than the 
130 permissible for expansion to a vacuum, a region of separation is 
to be expected. If the angle of attack is not too great, this region 
will probably be closed, with the central streamline reattaching to the 
upper surface a small distance behind the leading edge.  This reattach- 
ment will be followed by a compression of the flow through a system of 
shock waves whose arrangement is sketched only formally in the physical 
plane (and not at all in the hodograph plane, where the correct repre- 
sentation would probably lie on several sheets).  The effects of the 
flow near the leading edge will be mentioned later, but the exact 
process will remain undefined. Whatever the details, the speed on the 
upper surface will return to a subsonic value at some point K just 
downstream of a terminating,, normal shock wave. From K the central 
streamline continues at fixed inclination downstream along the upper 
surface, the speed increasing once more to the sonic value at the 
shoulder B. At this point another expansion takes place, similar to 
that which occurs at the corresponding point on the lower surface.  In 
this case the shoulder is represented in the hodograph by the down- 
going characteristic BG. 

^The supersonic expansion fan from the shoulder at B (and similarly 
at L) is discussed in detail in references 2 and 3. Suffice it here to 
say that the supersonic flow field, of which the expansion fan is the 
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initial part, is separated into two regions by the Mach line GE, which 
runs from the shoulder to the sonic point on the bow wave.  (This line 
was termed the "separating" Mach line in reference 2.) The supersonic 
flow in the region upstream of the Mach line GE is interdependent with 
the subsonic field between the bow wave and sonic line. To obtain a 
solution for the front wedge, a problem in transonic flow must there- 
fore be solved for the subsonic field and the interdependent portion of 
the supersonic expansion fan.  Conditions in the supersonic flow down- 
stream of the Mach line GE have no influence upon the subsonic field. 
The continuation of the flow beyond GE can be accomplished by purely 
supersonic methods once the solution of the transonic problem is known. 

Aside from the obvious lack of symmetry in the present case, the 
main difference between the flow here and that previously studied at 
zero angle of attack is the existence in the present problem of the 
localized supersonic region in the vicinity of the nose. As pointed 
out, conditions in this region are difficult to formulate. The problem 
has been considered by Guderley and Yoshihara (reference 9) in the 
course of their work at Mach number 1.  They find that, if the nose 
region is disregarded in the hodograph and the boundary condition 
along KB is fulfilled all the way in to 0, then the influence on the 
lift of the resulting fictitious flow at the nose is of somewhat higher 
than the second order in the angle of attack. This suggests that the 
effects of the real flow at the nose may be neglected in a first-order 
analysis such as the present. In the work which follows, as in the 
calculations of Guderley and Yoshihara, the supersonic region at the 
leading edge will therefore be disregarded. 

Formulation of Boundary-Value Problem 

As in reference 3, the analysis is based on the equations of the 
transonic small-disturbance theory with' the stream function + as the 
dependent variable. If the effects of the flow at the nose are ignored, 
the problem of the wedge at angle of attack a is then readily formu- 
lated as a boundary-value problem in the hodograph plane. To solve this 
problem for vanishingly small a, it will be assumed that the solution_ ty . 
at angle of attack can be expressed as the sum of the basic solution i|r 
previously obtained at zero angle plus a perturbation term at', where V 
is a function which does not itself involve a. By consideration of the 
difference between the boundary-value problems for t and t, a problem 
for the perturbation function t' can be formulated.  The boundaries for 
this problem turn out to be the same as those for the problem at zero 
angle, and*the boundary values themselves appear in terms of +. The 
details of these matters will now be given.  The reader who is interested 
only in the results can turn directly to the section Chordwise Distribu- 
tion of Lift on page 28. 
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Basic equations.- The basic equations will be taken in the form 
given in reference 3, that is, in terms of small disturbances from the  ^ 
critical speed a*.2 The independent variables are the normalized speed t\ 
arid the normalized inclination 0 as defined by the relations 

V/a*-l 
^7T- (la) 

V0/a#-1 

if-Z-t" -372 (i"b) A 7+1/   (V0/a*-l)
! 

where 

V   local speed of flow 

0   local inclination of flow relative to direction of free stream 

V0  free-stream speed 

a^  critical speed (i.e., speed at which the speed of flow and the 
speed of sound are equal) 

7   ratio of specific heats 

Use of these variables is equivalent to introducing the rules for tran- 
sonic similarity. In terms of the foregoing hodograph variables, the 
differential equation for the stream function t as given by the tran- 
sonic small-disturbance theory is 

+Tffi " 2f +gfgr = 0 (2) 

_ — 
As discussed in several recent papers (e.g., references 10 and ll), the 
theory can also be formulated in terms of disturbances from the free- 
stream speed V0. This latter, less restrictive formulation reveals 
clearly the relationship which exists between the transonic small- 
disturbance theory and the familiar linear theory of subsonic or super- 
sonic flow. As shown by Spreiter (see page 9 of reference 11), an a* 
analysis will yield values of the pressure coefficient identical to 
those of a V0 analysis provided the pressure coefficient and similar- 
ity parameter in the former case are taken as in equations (k)  and (13) 
below.  If this procedure is followed, the results of the a* analysis 
may even be expected to tend toward those of linear theory äs the free- 
stream Mach number increases or decreases from 1.  (An analytical 
example of just this behavior has been given by Bryson in appendix A 
of reference 7.) It appears, therefore, that the a# formulation, 
when suitably used, gives results of wider theoretical validity than 
would be anticipated on the basis of its own rather restrictive under- 
lying assumption.   • 
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This is essentially the.linear differential equation first studied by 
Tricomi (reference 12). It is elliptic for Tf<0 (subsonic speeds) 
and hyperbolic for iT>0 (supersonic speeds). 

The transformation from the hodograph to the physical plane is 
governed by the differential relations 

dx = 
1 M(''Mll"(2¥t^ (3a) 

P*9* 

dy = _i- (fcwdiT + V^) = -^~ ** (3b) 

where x=x(rf,0) and y=y(iT,3') are physical coordinates (horizontal and 
vertical, respectively) corresponding to a given velocity r\,6.     The 
symbol p  denotes the fluid density at the critical speed a#. Within 
the approximation of the transonic small-disturbance theory, the pressure 
coefficient Cp = (p-p0)/q0 can be calculated from the relation 

Cp = -glfs» -2(V0/a*-l)(?r-l) ' (k) 

The local Mach number is related to the speed of flow by the equation 

•:-■■' MÜ..L-1 (5) 

For simplicity of notation, the tilde will be omitted from the 
symbols r\  and 0 in the remainder of the development.  It is to be 
understood, unless stated otherwise, that the quantities t\  and 0 are 
themselves the normalized quantities defined by equations (l). 

Problem at zero angle of attack.- VJhen the angle of attack is zero, 
the localized region of supersonic flow at the leading edge disappears 
from sketch (a), and the flow field becomes symmetrical about the chord 
line.  The corresponding boundary-value problem in the T),0' plane has 
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been set forth in reference 3.  It is restated in sketch (c), where "both 
the upper and lower halves of the flow field are now included. In this 
representation, the surfaces of the wedge appear as the semi-infinite 
horizontal lines OB and OL, and the subsonic portion of the shock polar 
appears as the curve NAE. 

§-const. fv%(v,0w)dv 

0^*- 

0~+- 

for ■>}-*. 

0~*- 

fa,0w) = O 

%m^/i^ß-3ä^o 

i*iz$/Kfi--* 

$(y,-8w)=0 

|--const. fv%(v,-0Jdv 

Sketch (c) 

_   ■._   If the stream function foir zero angle of attack is denoted by 
^=t(T),e), the differential equation to be satisfied here is given by 
equation (2) as 

tm -^ee = o (6) 

The requirement that the flow shall be tangent to the surface's of the 
wedge provides the boundary conditions ■ 

\F(TI,±0W) =0   for TI< 0 (7) 
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where 0W denotes the normalized half-angle at the leading edge.  The 
stagnation point at the leading edge is represented in the present 
theory "by the condition that 

y—>0        for T)—>-», -0w<
0^0w 

Along the shock polar KAE, the relations for an oblique shock wave 
require that 

(8) 

U±L^*fl-0- (9) 

for 

Along the sonic line, boundary conditions are prescribed which represent 
the influence exerted on the subsonic field by the interdependent portion 
of the supersonic expansion fans. On the basis of the procedures given 
in reference 3, this influence can be represented completely by the 
requirement that 

where the upper signs apply for l<e<9w and the lower signs 
for -ew<©<-!• The constant k2 which appears here is given fcy 

k    
g4/3rt   =0.3^29 

where r(l/3) is the gamma function of the argument l/3-  The use of 
the relations (10) as boundary conditions' along the sonic line reduces 
the transonic problem of the flow over the front wedge to a purely 
elliptic problem in-the hodograph plane. 

In addition to the foregoing conditions, a further condition is 
necessary to assure that the solution for t will give the proper scale 
when transformed to the physical plane. This is furnished, for example, 
by the following expression for the half-chord of the profile, found by 
integrating equation (3a) over either OB or OL: 
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£ = 2 
2  P*a# 

(7+l)(y0/a»-l)' y ̂
nit],*^)   &\ (ID 

If the chord of the profile is given, this condition, together with the 
previous conditions (7) through (10), is sufficient to determine a unique 
solution to the problem.. 

It is obvious from the nature of the boundary-value problem (and 
also from considerations of symmetry in the physical plane) that the 
solution for ijr must be antisymmetric with respect to 0. The problem 
can be simplified, therefore, by discarding the lower half of the hodo- 
graph and replacing it by the condition 

+(T),0) for T) g - 1 (12) 

The resulting problem is readily_solved with numerical methods by 
assumingran arbitrary value of t at some point (as, for example, 
point E), solving for >jr in the upper half of the hodograph subject to 
|the conditions (7), (8), (9), (10), and (12), and then adjusting the 
(solution to satisfy condition (11). 

i ... 

I    It is apparent from the boundary conditions that the solution of 
'the foregoing problem will depend on the value of the parameter 6Vf 

which defines the position of the upper and lower boundaries in the 
hodograph. This parameter is related to the more familiar transonic 
similarity parameter g  by the relation 

*os 
MQ
2
-1 51>3 

[(7+D(t/c)]2/3  ew
2/3 

(13) 

where t/c is the thickness ratio of the complete double-wedge profile. 
In references 2 and 3 the solution of the foregoing problem has been 
carried out for four values of 6»,  ' 
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Problem at angle of attack.- If the supersonic region at the 
leading edge is ignored, the boundary-value problem for the wedge at 
angle of attack appears in the r\,9    plane as shown in sketch (d). 

c r ■g = const. J^e (y, 0w-at; a)dy 

& 

B 
i,(v,0w-ava)=O 

fv(OAahkJf&§ßdd, = 0 

&w-a 

r 
■ 

>  7 

[for 7-^-cD 

N 

^OAai^f^fßdS^O- 

0-*- #(V,-0w-a;a)=O 
■■-■■»-*. 

c r° , a = COnSt. Ji}<fre(y-0w-a} a)dy 
— CO 

■ff-a 

Sketch (d) 

The primary difference between this and the previous sketch is that the 
lines ÖB and OL, which represent the surfaces of the wedge, have each 
been displaced downward by an amount a, where a is the angle of 
attack normalized in the same manner as the other angles of inclination 
(cf. equation (lb)).3 '"■:-.■    .   . 
3In reference 9, Guderley and Yoshihara find it convenient to obtain the 

angle of attack by holding the profile fixed and changing the inclina- 
tion of the free stream.  This procedure, if applied in the present 
ease,_ would require the eventual calculation of the second derivatives 
of \jr on the shock polar. The present procedure, which holds the free 
stream fixed and changes the attitude of the profile, requires the cal- 
culation of only a first derivative of ijr at the surface of the wedge. 
Since the accuracy of numerical differentiation decreases with increas- 
ing order of the derivative, the present approach is to be preferred in 
a numerical analysis.  .    
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The -stream function at angle of attack will be denoted here 
by \|<=i|r(T),e;a), the latter notation being used to indicate the depend- 
ence of i    upon the parameter a. The function i|r must satisfy the 
differential equation (2), which is now written 

♦TJT, " ^%Q  =0 (Ik) 

The boundary conditions at the surface of the wedge now require that 

t(T),±ew-a;a) = 0   for T)^0 (15) 

while the condition at the leading edge becomes 

t > 0   f or Tj >-<», -0w-a< 0< 0w-a (16) 

The shock polar NAE is unaltered from the previous problem, and the 
condition on this boundary has the same form as before.  The conditions 
along the segments BE and LI of the sonic line are now 

n9       ■*0(O,el.a) 
^(O,0;a) + k2 /     d0x = 0 (17) 

±Jev-a [±(01-e)]
2/3 

where the lower limit of the integral has been changed in accord with 
the displacement of the points B and L.  The upper signs in equation (17) 
now apply for 1^0^0-w-cc and the lower signs for -0w-a^0-g- 1. An 
expression for the half-chord of the profile can be found again by inte- 
grating equation (3a) over the line OB or OL, which gives 

(7+l)(vJa.„-l)l1/£   r° 
 °       / ^M>±ev-a'>a) dT\ (l8) 

c _ 2 
2 . p„a„L 

If the chord of the airfoil is specified - say the same as at zero angle 
of attack - then the foregoing conditions are sufficient to determine a 
solution. No simplification based on symmetry considerations is possible 
in the present case. 

Perturbation problem.- The problem of the preceding section conceiv- 
ably could be solved by numerical methods - though with great labor -. for 
arbitrary values of a. Efforts in this direction would hardly be justi- 
fied, however, in view of the fundamental omission of the localized 
supersonic flow at the leading edge.  It is more reasonable to examine 
the problem for vanishingly small a, where this omission is valid and 
where there is hope that the amount of labor might be reduced. 
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To proceed along these,lines, it is assumed that t(T],0ja.) may "be 
expanded in a power series of the form 

*(Tl,eja) = i|f(-Ti,e;0) + a >a(T!,0jO) + 0(a
2) 

where, for present purposes, only terms to order a need he retained. 
The first term on the right represents the solution at a = 0 and is 
thus identical with the function %(T\,9)  previously introduced. JThe 
second term will he abbreviated hy means of the notation VWfQ)^^'9'0'' 
If terms of 0(a2) are discarded, the expression for * can then 

he written 

i(ri,0;a) = f(Ti,9) + a r (n,ö) (?-9) 

By comparison of the previous boundary-value problems for \|r and y, a 
problem for the perturbation function *'  will now be formulated. 

The differential equation for V     follows at once from the differ- 
ential equations (6) and (ik)  and the substitution (19). It is obviously 
of the same form as the previous equations, that is, 

♦',,,, "-Sri ree=0 (20) 

The boundary conditions appropriate to the surface of the wedge are 
established as follows:  The boundary condition (15) for V    is first 
rewritten, with the aid of the substitution (19), in the form 

$(T),±8v-a)  + a V (r\,±9v-a)  = 0 (21) 

By expanding in Taylor's series about the lines 0 = ±0W, the functions 
\j? and i|f' can be written       , . 

♦(^,+^-a) = t(^,±0w) - a *0(TI,±0W) + 0(a
2) (22a) 

**(Tl,±0w-a) = f(Tl,±0w) - at'0(ri,±0w) + 0(a
2) (22b) 

If these expansions are substituted into equation (21) and .+(TI,±0W) set 
equal to zero in accord with the boundary condition (7), one obtains 
finally for vanishingly small ,a 

V(TI,±0W) = te(T],±0w)   for Tj-gO     ;      '(23) 
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This is the boundary condition for t» appropriate to the surface of 
the profile. It will be noted that the condition is applied in the 
hodograph at the original, undeflected location of the surface 
(i.e.,- 0=±0W). The condition depends for its application on a knowledge 
of the basic solution t. 

The boundary condition for \|f' at the leading edge follows 
directly from the conditions (8) and (16).  It is the same as the corre- 
sponding condition for ijf, that is, 

i|r'—>o     for n—>-oo, -ev<e<ew (2*0 

As was indicated, the functions \Jr and ijr both satisfy the same 
linear, homogeneous boundary condition on the shock polar. It follows, 
as in the case of the differential equation, that the condition for P 
on the polar is again the same, that is, 

*i *^^*e" ° (25) 

for 

0 = ±(l-Tl)Vl+T], -l^Tl^O 

.4 

The treatment of the boundary condition along the sonic line is 
complicated by the fact that the parameter a appears in the condi- 
tion (17) as a term in the lower limit of the integral. For simplicity, 
the details will be confined here to the upper segment BE of the sonic 
line. For this segment, condition (17) becomes, after substitution 
from equation (19), 

*,«>..>♦«,„«>,«»+*2 r Ü24L d%♦^ r JM£^ dei. o 
1 >-i fa   -n\2/3 J fa--.a\,'i 

(26) 0v-a(oi-e)  '* Va(^"0) 

applicable for 1^0^0w-oc. To simplify this equation, the first 
integral is rewritten 

L^f*^'l-^-^-{ ±^^   (27) 
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It can be shown from Guderley's analysis of flow at a convex corner 
(reference 13) that, for vanishingly small values of (0w-0), the 
variation of + along the sonic line must he of the form 

+(0,0) = c (ew-e)
4/3 (28) 

where C is a constant for any given value of 0W. Differentiating 
this relation, one obtains 

f0(O,01) ~ (0w-0i)
1/3 

Substitution of this result into the second integral of equation (27) 
yields the fact that this integral must be proportional to a4/3.  The 
first integral in equation (26) can thus be written 

The second integral of equation (26) can be treated similarly by first 
rewriting it as 

/ 

0w-cx ,, t 

,e W*L ^. r ^^ ^ - rw"-^- ^     (30) 

To deduce the variation of ..+'  for vanishingly small (0w-0)> it is 
first noted that a result similar to equation (28) must also hold for 
the variation of + relative to the displaced location Of the shoulder, 
that is, 

4/3 
+(0,0) = C (0w-o>0) 

The quantity C = C(a) is a differentiable function of a which reduces 
to C when a = 0. Since a will eventually be made less than any 
assignable value of (0w-0), this expression may be expanded in the form 

+(.0,0) = C (0w-0)
4/3 13-i_.+ o(a2) 

.  3 0W-0 
(31) 
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Now it follows from the definition of \|r'  that 

*»(o e) = lim n°>e) - *{0>e) 
T  \WfU/ ff   «yf| ——————— 

Substitution from equations (28) and (31) thus gives for the variation 
of if*     in the vicinity of the shoulder .   ■ 

V(o,e) = lim 
a—>o 

C'c (ew-e)
4/3 _ ii c (ew-e)

1/3
+ o(a) a 

or 

♦»(0,0) = c (ev-ef/3- it c (ew-0)
1/3 

where C'=Ca(0).  This means that for vanishingly small (0w-0) 

VgiO^)   ~ (0V-01)-
2/3 

On the basis of this result equation (30) can be written 

(32) 

/ 

0  *'0(°»
ei)-    rH'eio^) 

d0, = / — — d6x .+ 0(^/3) 
L-a (Vö)a/S Wl "1 (Sx-e)2/3 

(33) 
yw 

If equations (29) and (33) are substituted into equation (26) and the 
boundary condition (10) is taken into account, one then obtains for 
vanishingly small a 

1fn(o,e)+k2y 
0W 

rereio.ej 

(ex-e) 2/3 
d0T = 0 (3*0 

where 1^0^0W. The boundary condition for p    along the upper segment 
of the sonic line is thus the same as the condition for f.     The same 
result can be shown to hold along the lower segment. 

It remains to impose the condition that the chord of the airfoil 
must remain unaltered during change in angle of attack. To express this 
condition in terms of V ,  equation (19) is first substituted into , 
equation (18) to obtain 

£ 
2 P***L 

(7+l)(vo/a„-l) 
1/2 

%(T},±9w-a)  ..+ a\|f»0(T),±0w-a) dT) (35) 
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As in the treatment of the boundary conditions along the upper and 
lower boundaries, Taylor's expansion gives 

t0(T!,±0w-a) = *e(T),±0w)-a*00(Ti,±ew) + 0(a2) (36a) 

re(j],±ev-a)  =+,
0<Ti,±0w)-.ai|f00(Ti,±0v) + 0(a

2) (36h) 

It can be inferred directly from the boundary-value problem for ijr 
that ^ee(r\f±ev)  = 0, so that the term involving this quantity may be 
dropped from equation (36a).  Substitution of equations (36) into 
equation (35) and application of the previous expression (ll) leads, 
for vanishingly small a, to the condition that 

/o 
Tl r0(T),±ew) CLTJ = 0 (37) 

The boundary conditions (23), (2*0, (25), (3^-),  and (37) are sufficient 
to determine the solution for f  in the hpdograph. 

As with t, the boundary-value problem for f can be simplified 
from considerations of symmetry.  Since f is antisymmetric with 
respect to 0, the nonhomogeneous boundary condition (23) which is 
imposed on f1    along the upper and lower boundaries must be symmetric 
in this variable.  The remaining conditions, which are all homogeneous, 
are also symmetric. It follows that f     itself must be a symmetric' 
function of 0.4 The problem can therefore be simplified by again 
eliminating the lower half of the hodograph and substituting in this 
case the condition that 

*'0(T),-O) - .0   for T)£- 1 ■ (38) 

4This result can also be argued directly from considerations in the 
physical plane.  It is necessary to make two observations as follows: 
(l) Since the profile itself is symmetric about the chord line, the 
flow field at a negative angle of attack must be the inverted image 
of the flow field at an equal positive angle.  (2) To be consistent 
with the basic perturbation assumption, it must be presumed that all 
changes in the flow field are smooth functions of angle of attack 
at a =  0.  These statements taken together imply that the vertical 
distance between any two points of equal T) and corresponding posi- 
tive and negative 0 is, to a first order, unaffected by angle of 
attack. It follows that, for sufficiently.small a, the increments 
in t and ty between the two points are equal and hence, on the basis 
of equation (19), that the value of i|r'  at the two points is the same. 
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The problem which is finally to be solved is thus as summarized in 
sketch (e). The boundaries for this problem are identical with those 
used to obtain $. The boundary conditions are also identical insofar 
as the shock polar and sonic line are concerned.  The only differences 
between the two problems are in the conditions imposed along the bound- 
aries OB and OA. As was the case with %,  the solution here must be a 
function of 0W. 

M'(v,8w)dv=o 
<?-*- B 

r*t SL 

"(I for n-* 

*'-j&/i^*'° 

o~*- V=0 
*~v 

Sketch (e) 

Because of the nature of the integral condition along the upper 
boundary OB, a direct solution for P    is not feasible by numerical 
methods.  To obtain a solution, therefore, the problem is broken down 
into two subsidiary problems by means of the substitution 

V  « *V+ b*B- (39) 

where b is a constant whose value"is to be determined. Boundary-value 
problems for VA  and pB    are' then defined as' shown in sketch (f). 

B n ^ . B 

* *  ■           r.-o- 

E 

u ^  
t/r'=0 

f>=^*0-_ 

E 

-^  \A \A 

Problem for 6' 
"A 

U "^  

Problem for tir" rB 

- 

Ske :tch (f) 
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In "both problems the integral condition along the upper "boundary OB is 
ignored for the time being, and an arbitrary condition is introduced 
instead at the point E. In the problem for Vr

A,  only the nonhomoge- 
neous condition (23) is imposed at the upper boundary, and the condition 
at E is the homogeneous one that \|f'A = 0.  In the problem for t'B,   ' 
the homogeneous condition i|f'B = 0 is imposed along OB, and the condi- 
tion at E is that t'B has an arbitrary value ^'B ^ 0.  The conditions 
at the remaining boundaries are the same as in sketch (e) and are there- 
fore not repeated here. It is apparent that a superposition of ^'A 
and t'-g will constitute a solution of the original problem provided the 
value of b is adjusted so that the integral condition (37) is satisfied 
on the upper boundary. The necessary equation for b is found by sub- 
stituting the expression (39) into «condition (37) and is 

-00 
b=- —  (ko) 

Relations for quantities in physical plane.- To complete the funda- 
mental analysis, relations must be established between t' and the 
relevant quantities in the physical plane. Let x = x(r\,9)  and y = y(ri,0) 
denote the coordinates at which a given velocity r\,B    is found in the 
physical plane when the profile is at zero angle of attack. As shown in 
reference 3 (pp. 29T31), the transformation equations (3), when applied 
to the case of zero angle of attack (and written in the present notation), 
can be put in the dimensionless form     . 

(§) -i_ (2r^fld^ + %&9) (^la) 
Lw 

[(7+D(t/c)]
1/3 "d(f)'- '&££(9^ + .ffldo)'- £$--** .(^) 

where Iw represents the integral 

iw =J.  n^(-n,0w) «3-Ti ..-.'... Sk2) 
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By taking the origin of the physical coordinates at the leading edge and 
introducing the notation X = x/c and Y = [(7+1)(t/c)]1/3(y/c), equa- 
tions (kl)  can he integrated to give 

Z(TI,0)=A- f(2^  dT) + + d9) (43a) 

C 

Y(n,0) - iffsi— t v      (^3b) 
4Ix Lw 

The integration in equation (>3a) is performed in the hodograph over any 
curve C which begins at TJ =  -00 and ends at the point T|,0. The 
generalized coordinates X and Y at which the same velocity T),0 is to 
he found when the airfoil is at angle of attack are given correspondingly 
"by 

X(T),e;a) = -L. f (2rtfeäLT\  + + de)' (kka.) 

(26 )1/3 

Y(T|,0;a) = LSI + (1^-b) 

^w 

The integration in equation (kka.)   is considered to he taken over the 
same curve C as before.5 The integral lw is now given by 

Iw = J    ^(^©w^.dT] . ' ,        (45) 
--00 

It can be shown from equations (19), (36), and (37) that for vanishingly 
small a •  ■• , 

•    iw = iw      , {h6) 

Equations (kk)  can now be specialized in the light of the basic 
perturbation assumption. This assumption implies at. once that the coor- 
dinates X and Y in the physical plane must be expressible in the form 

5 
If^ C lies slightly outside the domain in which t is defined - as 
will be the ease, for example, when the integration is taken over the 
upper surface of the wedge in its undisplaced position - i|r is to be 
thought of as being continued analytically outside the boundary. 
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■■■•■x(Ti,e;d) .= x(n,e)'+aX'(Ti,e) (^7a) 

Y(rj,0;a) = Y(TJ,0) + a Y'(TJ,0) (W 

where X» (TJ,0) = Xa(T],0;O) and Y» (TJ,0) = Ya(rj.0;O).  If expressions (19) 
and (Vf) are substituted into equations (kk),  and equations (^3) and (k6) 
are taken into account, the following relations are finally obtained 
for X' and Y'  in terms of \|r': 

X'(TJ,0) -i J (2TI*'0CLTI + t^de) (l»8a) 

(20 )1/3 

kfv 

The foregoing equations (U8) give the initial rate of movement with 
angle of attack of a point of fixed velocity rj>0. One requires for 
practical application, however, the rate of change of TJ and 0 at a 
point of fixed location X, Y. Equations relating the two sets of deriv- 
atives can be obtained as follows:  If TJ and 0 are regarded in the 
physical plane as functions of X, Y, and,a - that is, TJ = T](X, Y; a) 
and 0 = 0(X, Y;  a) - then the corresponding total differentials are 

dT) = T)xdX + TiydY + Tjada (^9a) 

d0 = 0xdX + 0ydY + 0ada (k9b) 

Consistent with the basic perturbation assumption, TJ and 0 can be 
written     • 

T](X,Y,a) = fj(X,Y) + a TJ»(X,Y) (50a) 

0(X,Y,a) = 0(X,Y) + a 0'(X,Y) (50b) 

where fj and 0 represent the conditions at a given point X, Y at zero 
angle of attack and TJ' and 0' are defined by TJ'(X, Y) = Tja(X. Y; 0), 
0*(X, Y)=0a(X, Y; 0).  In view of equations (50), .equations (49) can 
be written for vanishingly small a 

dTj = tjxdX + fJYdY + Tj'da -        (51a) 
.'■'•' / 

d0 = o^dX + 0ydY + 0'da (51b) 
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Similarly, from equations (Vf), one can write for the differentials 
of X and Y as functions of T|,0, and a 

dX = X^dri + X0d0 + X'da 

from which 

• dY = Y dt) + Y0d0 + Y'da 

X^dT] + X0d0 = dX - X'da 

Y^dT] + Y0d0 - dY -Y'da 

(52a) 

(52b) 

Solution of equations (52) for dri and do and comparison of the results 
with the alternative expressions (51) gives finally for T)' and 0' 

V = V - X0Y' 
xT)Ye - xeYT) 

(53a) 

_ V -
X

T)Y' 
0' = 

xT}Ye " X0YT) 

(53b) 

These equations can he put in more directly useful form by evaluating 
the derivatives of X and Y from equations (1+3) and substituting for 
X» and Y' from equations (k8).     There results finally 

V(X,Y) = - 
2^02-VL c 

(5*0 

0'(X,Y) = 7272 
2n*0 -+. 

\ J (2T)t»0dTi +^0) -2^+' 

r\ C 

(54b) 

By means of these equations the initial rate of change of T) and 0 at 
some fixed point in the physical plane can be calculated corresponding 
to any chosen location in the hodograph.  The coordinates at which these 
derivatives apply are found from the solution at zero angle of attack 
by means of equations (43). 
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The foregoing equations are considerably simplified when applied at 
the surface of a wedge profile. Here the boundary condition is that_ V 
is constant on a line of constant 6  (cf. equation (.7)), with the result 
that iL = 0. Equation (5^), for example, can thus be written as 
simply 

V(X,±0)=-—±  f  TI*'0(TI,±0W) CLTJ (55). 
Ti*0(Tl,±0w) J^ 

where the upper signs pertain to the upper surface and the lower signs 
to the lower surface. The corresponding rate of change of pressure 
coefficient is found by differentiating equation (k)  with respect to 
angle of attack. If a is used now to denote the true angle of attack ■ 
(related to the previously used, normalized angle of attack by an equa- 
tion like (lb)), such differentiation then gives 

(St)        --2(JL)1/S    1  

Here V  is still the derivative with respect to the normalized angle 
as given by equations (5^a) or (55)- With the aid of equations (5) and 
(13), this result can be rewritten 

[(7+D(t/c)]1/3(^)_  = - 2(20W)
1/3 T,'     .    (56) 

'ct=o 

It can be seen from equation (55) and the symmetry properties of ijr 
and i|r'  that TJ' must be of equal magnitude but opposite sign on the 
upper and lower surfaces of the profile.  If the local lift coefficient 
is represented by Ap/qo - (Plower ~ Pupper)/lo> it then follows from 
equation (56) that 

■[M(t/c)^'fÄ| =M2e„)1/3V(x)4<,)      (57) 
L  da u.U.     -Ja=0 

where the notation T)*(X,+0) indicates that the value is to be taken on 
the upper surface of the profile.  Substitution from equation (55) gives 
finally 

[(7+1)(t/c)3V3r£(^o)] m;.^l   A*0(,,0w)d,    (58) 
L  da  Ja=Q   f]i|f0(7i,0w) i/M 

By means Of this equation, the initial rate_ of growth of lift at any 
chordwise station can be obtained.  Since t and ^' are both functions 



WACA TN 2832 27 

of the parameter 6W, the generalized quantity- which appears on the left- 
hand side of equation (57) is also a function of this parameter.  These 
results are in conformity with the rules for transonic similarity (see, 
for example, reference 11). 

METHOD OF SOLUTION 

As in the previous calculations of \jr, the boundary-value problems 
for i|f'A and i|f'B can he solved through the use of finite-difference 
equations and relaxation techniques. A detailed description of the 
general method has been given in reference 3 and need not be repeated 
here. Most of the necessary finite-difference equations - notably the 
tedious ones along the shock polar and sonic line - can be taken over 
directly from the previous work. The only equations which need be 
altered are those directly influenced by the change in boundary condi- 
tions on the upper boundary and on the horizontal axis. The only real 
difficulty from this source is encountered in the solution for \|rA in 
the vicinity of the shoulder (point B in sketch (f)). At the shoulder 
itself, the boundary conditions require a singularity in the first 
derivatives of i|r»A, which means that any purely numerical treatment 
would be of doubtful validity in the vicinity of this point.  This dif- 
ficulty is overcome by subtracting out an analytical' solution of the 
proper singular form and then working locally with the difference 
between this solution and the desired unknown.  The singular solution 
is obtained from the general results of Guderley (reference 13) and is 
expressed in terms of hypergeometric functions.  The details of this 
and other matters regarding the numerical calculations for the front 
half of the profile are given in appendix A. 

With the solution known for the front half of the profile, the 
calculation of the lift on the rear half is a simple matter.  The com- 
putations are carried out in the physical plane and are based on the 
characteristics net previously constructed for the flow over the rear 
wedge at zero angle of attack (see, for example, fig. k  of reference 3). 
Starting from the known solution for t', one first employs equations (k8) 
to compute the initial rates of movement of the points at which the Mach 
lines of the basic characteristics net meet the sonic line. Using these 
results and the known slope of the segments of the basic net, one then 
proceeds stepwise along consecutive downgoing Mach lines, calculating 
the initial rate of movement of successive intersection points on each 
line. By application of the proper boundary conditions at the surface 
of the wedge, the value of TJ» at the surface is finally determined, and 
from this the initial distribution of lift is calculated. The details 
of the procedure are given in appendix B.     " 
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RESULTS AND DISCUSSION 

Calculations of the lift have been carried out, following the 
methods just outlined, for the same values of 0W used in the work 
at zero lift, namely, 1-3, 1.6, 2.4, and 4.2.  These values correspond, 
respectively (see equation (13)), to values of the similarity param- 
eter £0 of 1.058, O.92I, 0.703, and 0.484. 

To illustrate the results for the front wedge in the hodograph, 
figures 1 to 3 have been prepared showing the variation of . ^'A* ty*B> 
and V for 0W = 1.6.e    The results for t^ß   (fig. l) are only slightly 
different from those previously shown for if in figure 3 of reference 3. 
As before, a rapid (but regular) variation is apparent in the dependent 
variable in the vicinity of the point TJ = 0, 0 = 1. The results for t'A 
(fig. 2) show a rapid variation near the point r\  = 0, 0 = 0W.  This is 
a consequence of the previously mentioned singularity in the first 
derivatives of t'^ at tnat P°int.  The values of t' (fig- 3) are 
found in the present case'from the equation '.i|r' = t'^ - 0.5348 t'g 
(cf. equation (39)).  They exhibit the same behavior as does t'^ in 
the vicinity of the singular point but differ markedly in other parts of 
the field. For reference, the numerical values from which figures 1 and 2 
were plotted are given in tabular form at the end of the report. 

The complete results for the lift of the profile are given in 
figures 4 through J.    These results will be discussed in the following 
paragraphs. 

Chordwise Distribution of Lift 

Figure 4 is a plot of the calculated lift distribution, in tran- 
sonic similarity form, for the four values of  |Q considered in the 
present work. Also shown are the results for  |Q = 0 (MQ = l) given by 
Guderley and Yoshihara in reference 9.  It is convenient for purposes 
of discussion to think of a similarity plot, such as that of figure 4, 
as pertaining to fixed values of t/c and 7.  From this standpoint, an 
increase from zero in the similarity parameter  i0 is equivalent to an 
increase from 1 in the free-stream' Mach number MQ.  For simplicity, 
this point of view will sometimes be adopted in the descriptions that 
follow. 

6For the calculation of ty'-g in this example, use was made of 236 
lattice ipoints distributed as shown for t in figure 2 of reference 3. 
For i|r'«', 380 points were used with a distribution appropriate to the 
altered behavior of the dependent variable. 
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The lift distributions of figure k  are all of the same general 
shape.  In all cases the calculated lift tends toward infinity at the 
leading edge of the profile. This type of result, which is of course 
physically impossible, is well known from the linear theory of airfoils 
at subsonic speeds. It is a result of the obvious failure of the small- 
disturbance approximations to conform with the actual phenomena in the 
vicinity of the leading edge. This local failure of the theory is 
known in the linear, subsonic case to be of little consequence insofar 
as the over-all lift is concerned. It may be presumed that a similar 
situation exists here. 

As one proceeds rearward from the leading edge, the lift distribu- 
tion falls more or less rapidly, reaching a value of zero directly 
forward of the shoulder. This latter result could have been foreseen, 
since the speed on both the upper and lower surfaces has a fixed 
(i.e.,. sonic) value at this location. Directly to the rear of the 
shoulder, the lift distribution starts anew from zero. This must 
obviously be the case, since the expansion from sonic speed is, in 
Prandtl-Meyer flow, a unique function of the local turning angle, which 
is the same for both surfaces. Rearward from the shoulder the lift 
increases monotonically to a relatively small, finite value at the 
trailing edge. 

Over the front wedge, the four curves of the present study exhibit 
a uniform progression with respect to  £ . The curve of Guderley and 
Yoshihara, however, crosses the present curves at several points.  The 
reasons for this are not clear, though it is highly unlikely that such 
a result could be in fact correct. The observed behavior may be due to 
some consistent inaccuracy in the present numerical approach or to the 
approximations introduced by Guderley and Yoshihara in satisfying the 
boundary conditions for the interdependent portion of the supersonic 
expansion fan. Over the rear wedge, the present computations give vir- 
tually a single curve for the four values of 5Q.  There is again, how- 
ever, a small inconsistency with the results given by Guderley and 
Yoshihara.  This is as might be expected if the calculated flow over the 
front wedge is in error in either case. 

Lift-Curve Slope 

Figure 5 shows the generalized slope of the lift curve at zero 
angle of attack plotted as a function of the transonic similarity param- 
eter. Results obtained on the basis of the transonic small-disturbance 
theory are shown by three solid-line curves. Each of these curves con- 
sists of two segments separated by a gap within which the curve cannot 
be defined on the basis of the available results.  The uppermost of the 
three curves gives the lift of the complete profile; the other two show 
the division of lift between the front and rear wedges. 
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The left-hand segment of each of the curves in figure 5 shows the 
variation of lift-curve slope over most of the range of flight speed in 
which the bow wave is detached, which is the range of primary concern 
in the present analysis.  The calculated points from which these curves 
were drawn are shown in the figure.  The points denoted by squares were 
obtained by mechanical integration of the lift-distribution curves of 
figure k.7    The circled points on the vertical axis were located on the 
basis of the work of Guderley and Yoshihara. 

The right-hand segment of the' curves in figure 5 shows the varia- 
tion of lift-curve slope in the range Of flight speed in which the bow 
wave is attached and the flow is completely supersonic. To the order 
of accuracy of the present theory, this condition exists for the double- 

wedge profile at zero angle of attack when £o;> 2
1/3 = I.260.8 Above 

this value, results completely consistent with the fundamental assump- 
tions of the transonic small-disturbance theory can easily be obtained 
by analytical methods.  To this end, one need only presume that the 
speed is constant on each straight-line portion of the airfoil surface, 
a condition which is actually fulfilled over most of the pertinent 
range of £Q.     The necessary procedures are outlined in appendix C.  To 
the accuracy of the transonic small-disturbance theory, the results 
provide an exact solution for the lift-curve slope of the front wedge 
for all values of |0 in the range of completely supersonic flow. For 
the rear wedge - and hence for the complete profile - the solution is 
exact down to a limiting value of £0 somewhat greater than I.26O.  - 
Below this limit the interaction of the shock wave from the bow and the 
expansion fan from the shoulder influences the flow over the rear wedge, 
with the result that the condition of constant speed is not satisfied. 
The position of this limit is difficult to determine exactly. As shown 
in appendix C, however, it must lie at a value of |Q less than I.287. 
The curves for the rear wedge-and complete profile are thus approximate 
for at least a portion of the interval from 1.287 to 1.260 and are 
therefore shown dotted in this range.  It can be demonstrated that 
inclusion of the interaction effects in the analysis would cause an 
increase in the computed lift for the rear Wedge.  Exact results would 
thus lie somewhere above the dotted portion of the curves in figure 5-, 

As in the eariier calculations of the drag coefficient at zero angle 
(cf. page 36 of reference 3), the integration over a small interval 
near the leading edge was carried out analytically on the basis of an 
asymptotic representation of the solution in the'hodograph plane. 

Attachment of the wave takes place at the somewhat lower value of 

l0 = 3/(*0
2/3 = 1.191- For 1.191 < i0<I.260 the wave is attached 

but the flow behind it is still subsonic. 
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The most interesting aspect of figure 5 is the behavior of the lift 
in the vicinity of shock attachment. Despite the gap in the curves in 
this vicinity, i't is obvious that the lift-curve slope of the complete 
profile must attain a maximum somewhere in the range from £Q = I.Ö58 
to £0 = I.287.  This is in marked - and somewhat surprising -contrast 
to the previous results for the drag coefficient at zero angle of attack, 
which was found (reference 2) to decrease monotonically as the similarity 
parameter increased above zero. The peak in the curve in the present 
case is accompanied by a similar variation in the lift-curve slope of 
the front wedge. The results for the rear wedge may or may not pass 
through a minimum in the same range of £0. 

A determination of the exact shape of the curves in the vicinity of 
shock attachment is not feasible on the basis of the present laborious 
methods. The existing-curve for the complete profile does show a maximum 
in the range of completely supersonic flow, but this is in the portion 
of the range in which the computed curve is known to be erroneously low. 
If exact results were available for all values of iQ, the maximum would 
undoubtedly be somewhat higher and displaced somewhat to the left. The 
infinity which appears in the slope of the curve at |0 = 1.2Ö0 (see 
appendix C) would probably disappear as well. The lift of the rear 
wedge, which now goes to zero at £0 = 1.260, would presumably remain 
finite throughout. 

Within the transonic range itself, the curves of figure 5 show 
little variation for some distance above a similarity parameter of zero. 
This is in accord with Guderley's recent analytical study of two- 
dimensional flows with a free-stream Mach number close.to 1 (refer- 
ence ik).     The results of Guderley's work imply that, to the accuracy 
of the small-disturbance theory, the lift-curve slope does not vary as 
the free-stream Mach number passes .through 1. The curves of figure 5 
have been faired so as to conform with this requirement. It is apparent 
that Guderley's result of zero variation may be taken as a good working 
approximation even at Mach numbers some distance removed from 1. The 
same result was found in reference 3 with regard to the drag coefficient 
of the complete profile at zero angle of attack. 

Over most of the range of completely supersonic flow, the lift- 
curve slope of the complete profile exhibits the type of variation well 
known from linear theory. This latter theory gives for the lift-curve 
slope of all thin profiles 

dc7     k 
-~ -   p 1/2 (59) 
da   (Mo2-!)1/2 
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which can be written in terms of the transonic similarity variables as 

[(r+i)(t/c)]V3^ = rl_ (60) 

The dashed curve in figure 5 is based on this equation. There is con- 
siderable quantitative difference between the linear and nonlinear 
results for values of ZQ    just'above I.287. As i0 increases, how- 
ever, the curves given by the two theories appear to converge. This 
latter behavior is in accord with Spreiter's considerations;(refer- 
ence 11) regarding the basic relationship between the linear and non- 
linear theories. 

To put the results in more familiar form, the lift-curve slope of 
the complete profile has been replotted in figure 6 äs a function of 
Mach number for 7 = l.k.     The results of linear theory give a unique 
curve defined by equation (59).  The nonlinear, transonic theory pro- 
vides a family of curves with thickness ratio as a parameter.9 As 
would be expected, the range of Mach numbers over which the linear 
theory is a poor approximation becomes smaller as the thickness ratio 
is reduced. It can be reasoned, in fact> that the nonlinear results 
must tend toward the results of the linear theory as t/c—>0. 

Center of Lift 

Figure 7 shows the chordwise position of the center of lift (x/c)z 
as a function of the transonic similarity parameter. . The arrangement 
of the figure parallels that of figure 5-  As before, the indicated 
points were calculated on the basis of the lift distributions of 
figure k.     The curve in the range of completely supersonic flow 
( £0 ^1•260) was obtained by means of the equations of appendix C. 
Only results for the complete profile are shown.; ..., . 

Here, as in reference 2, a multiplicity of curves could be obtained 
for each thickness ratio by using expressions for the pressure coef- 
ficient and similarity parameter different from those of equations (k) 
and (13). In view of the recent developments outlined in footnote 2, 
such complications now appear to be of lessened significance. 
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The movement of the center of lift with increasing Mach number is 
of some interest. At a free-stream Mach number of 1, the results of 
Guderley and Yoshihara indicate a position about 29 percent of the 
chord aft of the leading edge. As the Mach number is increased, the 
center of lift first moves forward, slowly in the initial stages and 
then more rapidly as the condition for shock attachment is approached. 
In the completely supersonic range, this trend is reversed; the center 
of lift then moves aft toward the midchord location given by linear 
theory. Apparently, the reversal of the direction of motion must take 
place rather suddenly in the vicinity of shock attachment. The limit 
of forward movement cannot be specified, except to say that it must lie 
somewhere ahead of 22 percent of the chord (and probably aft of the 
leading edge). The dotted (i.e., inexact ) portion of the curve passes 
precisely through the quarter-chord point at £ = I.260.  (The corre- 
sponding lift distribution is one of uniform lift on the front wedge 
and zero lift on the rear.) Because of the interaction effects 
previously discussed, an exact result would lie somewhat above the 
dotted curve. < 

CONCLUDING REMARKS 

The present calculations add support to the growing conclusion 
(see references 2, 6, J,  8, and 1*0 that no marked changes take place 
in characteristics of airfoil sections as the free-stream Mach number 
passes through 1. The establishment of this conclusion must be regarded, 
in fact, as one of the major successes of recent research in transonic 
flow. In the present case, as in the previous study of the drag coef- 
ficient at zero lift, the variation of the aerodynamic quantities with 
free-stream Mach number is most rapid in the vicinity of shock attach- 
ment. Unlike the behavior of the drag coefficient, however, the varia- 
tions here are large and characterized by a sudden reversal in the sign 
of the derivative.  In drawing conclusions from these results it must 
be remembered, of course, that the theory assumes an inviscid medium 
and an airfoil of small thickness and infinite span. It also assumes, 
in effect, that the angle of attack is of an order smaller than the 
thickness ratio.  To what extent the results will be valid for viscous 
flows about finite-span airfoils at practically usable values of the 
thickness ratio and angle of attack is difficult to say. The effects of 
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finite span, for example, will surely cause a reduction in the variations 
near shock attachment. In the present state of theoretical development, 
the study of these effects is a task for experiment. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Aug. 1, 1952 
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APPENDIX A 

SOLUTION OF BOUNDARY-VALUE PROBLEM 

FOR FRONT WEDGE IN HODOGRAPH PLANE 

The solution of the boundary-value problems for t'A and '♦'B was 
accomplished by finite-difference methods similar to those developed for 
the calculation of f    in reference 3. The description here will be 
limited to the few features wherein the present work departs from that 
discussed in the earlier paper.  (See general remarks under METHOD OF 
SOLUTION ä) The notation and sketches follow the conventions used in * 
reference 3« 

Finite-Difference Equations Common to Both Problems 

The only finite-difference equations common to the problems for 
♦ 'A and ♦■'£ but not found in the problem for ty derive from the bound- 
ary condition on the horizontal axis (see sketches (e) and (f)), This 
condition is given for both problems by equation (38) and is ^ 'g (TJ,0) = 0 
for T\ <-l. In the previous work, the finite-difference equations for 
lattice points located oh a boundary were obtained by approximation to 
the boundary condition itself. In the present case, the approximation 
to the differential equation will be employed, and the boundary condition 
incorporated through use of the equivalent symmetry property. 

Consider a typical point 0 on the horizon- 
tal axis as shown in sketch (g). Point 3 is a 
fictitious lattice point located below the hori- 
zontal axis at 0 ='-A, where A is the lattice 
interval. The finite-difference approximation to 4-      A— 
the differential equation (20) of the present 
text is given by equation (20) of reference 3 as 

.♦'a + *»4 - 2ti0(*'1+t'8)-2(l-2Ti0)*'0 = 0    (Al) i 

where r\0    is the abscissa of point 0. The symme-    q, . , / \ 
try property leading to the boundary condition (38)    »Ke'ccn \&) 
requires that if '3 = t 'i, so that for points on the horizontal axis equa- 
tion (Al) reduces to 

Vz  + *'4 - H^'i - 2(1-2TI0)*'0 = 0        '   (A2) 
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The point at the intersection of the horizontal axis and the shock 
polar needs special consideration. Sketch (h) shows conditions at this 

point. Here, as before, point 4 is a ficti- 
tious point located below the boundary sym- 
metrical to point 3- It follows from the 
boundary conditions (25) and (38), both of 
which must be satisfied at the point 0, that 
the first derivatives in the coordinate 
directions are both zero at that point. On 
the basis of this fact, if the function 
i|f'(T],0) is expanded in a two-dimensional 
Taylor's series about point 0, the following 
finite-difference relations for the second 
derivatives are easily obtained: 

Sketch (h) 

^nTjIo-^'i-ir^-I^o 

A^'eelo = 2**3 - 2*'o - k^'mlo 

Here the symmetry property about the horizontal axis has been used to 
equate V    to *'«,. Substitution of these relations into equation ^0) 
for Ti = -1 leads to the following finite-difference equation for the 

point 0: 

Ml-2ka)f!- § (l-2ka)*'2 + kr3  -[^'+ I (l-2k2)^ *'o = 0 (A3) 

Finite-Difference Equations Special to **B 

The only finite-difference equation special to the problem for t B 
is the one used to terminate the field of computation at some vertical 
line on the left. As in the corresponding work for .*, this equation is 
derived from an asymptotic solution of the boundary-value problem valid 
for large negative values of TJ- 

The derivation is parallel to that 
described in detail on pages 16 and 17 of reference 3.. 

The boundary conditions which 
must be satisfied by V» at large 
negative values of TI are shown in 
sketch (i). The shaded section shows 
the anticipated variation of t'B 

for constant T). A solution of the 
differential equation,which satisfies 
the given boundary conditions is 

\for y-»~<x> 

0=0* 

-0=0 

Sketch (i) 
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P^,B)  - £ Cn 0os(|2)x^K1/3[^ <*,)*» 

n=i 

where K1/3 is the modified Bessel function of the second kind of 
order 1/3 and the Cn are appropriate constants. If only the leading 
term of this solution is used and the Bessel function is replaced by the 
first term of its asymptotic expansion, there results 

fB(T,,fl) = C cos (ß-) X(-T))-1/4 exp [- .JL (-2T))3/2 

As in the earlier work, let A denote the lattice interval and ß some 
large negative value of i\    such that A/ß«l. It then follows from the 
foregoing solution that, to a first order and for a given value of 0; 

*'B(-P»8)   
V  **' V 2Sw    / 

By substituting this relation into equation (Al), a finite-difference 
equation can be obtained which is valid for points on the line TJ = 
and does not include any points to the left of this line (cf. equation (22) 
of reference 3)• 

Finite-Difference Equations Special to t'^ 

The only equations special to the problem for V&    arise as a con- 
sequence of the condition along the upper boundary, where the values 
of if\    are prescribed as a function of TJ. Along most of the boundary, 
this condition can be met by substituting the.prescribed values directly 
into finite-difference equations of the type (Al) for points one interval 
below the boundary. Because of the nature of the boundary values 
near r\ =  0, however, some change from previous procedures is necessary 
in the vicinity of the shoulder.- Modification is also required in the 
equations used to terminate the field on the left. 

Points near shoulder of wedge.- From the known behavior of t in , 
the vicinity of the shoulder (see Guderley's results, reference 13, for 
the flow around a convex corner), it can be shown that the variation 
of t'A along the upper boundary near T) = 0 must be of the form 

*'A(n>ew) = *e(T\M =D(-T1)
1
/
2

'        • (A5) 

where D is a constant of proportionality. ' A singular solution of the 
differential equation (20) which is valid in the vicinity of the shoulder 
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and which satisfies the boundary condition (A5) is also obtainable from 
Guderley's results. This solution is, in the present notation, 

t^Ml-Bh)1^ (i-^)1/6 F(- i, i, |; ^L) (A6) 

where F is the hypergeometric function and £ = £(TJ,0) is' defined by 

Equation (A6) is suitable for use near the upper boundary (0 = 0W, s = 0). 
Near the sonic line (-T] = 0, £ = -») the following alternate form is 
available: 

-,1/6 

*A (TJ,0) = As 
D 

22/3 

(-T)) 
1/2 

.(-Ti)'8'+|.(e^e)a 

F(4 |, £; 1 

F 112 _1_ 
■6' 3* 3* "l-'C 

22/3(i-C)1/6 ^6 3 3 1-^ 

If equation (A7) is evaluated on the sonic line, there results 

(A7) 

3V3 
27/6 + L (°^) = 7^7Z D (0w-O) 

1/3 
(AB) 

This result is in agreement with equation (32), which was developed from 
other considerations. It is apparent from equations (A5) and (A8) that 
a solution for f&    will have a singularity in the first derivatives at 
the point T] = 0, 0 = 0V. / 

Because of the foregoing singularity, a direct numerical calculation 
of ty'A might be expected to run into difficulty in the vicinity of the 
shoulder. Attempts along these lines lead, in fact, to the unlikely 
result of negative lift over a small region of the profile just forward 
of the midchord. Reductions of the lattice interval to quite small values 
served merely to decrease the extent of this region. This is in contrast 
to the previous work for ^ (and for t'B as well), in which the singu- 
larity at the shoulder appears in the second derivatives. In that case, 
a sufficiently accurate solution for the unknown function could be obtained 
by direct calculation. In the present work, it was found necessary to 
subtract out the singularity in the first derivatives according to the 
following procedure: 

Let a function S^'A be defined such that 

8*'A = *'A-rAc 
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lit  fA7?AsTf IC f^ar solution of the type given by equations (A6) 
ZLIII' A tUa1' numericaHy determined values of fA  on the 
upper boundary are examined, it is found that for a small leLth of the 
boundary near the shoulder these values can be replaced to a good Lproxi- 

S doSe yan/t7, P0Ver/ariati0n °f ^ f°™ &™^ equation^)^This 
S bo^C Vl ZTT- *l(l8*?erm^  SUCh that "^ ^^ length uuuxiaciry "F A lT),öWj) = rA T^A or 8^'A = 0.  On this basiq a 
boundary-value problem for 6*A can be dtfined for a small region near 
the shoulder as shown in sketch (j). The region near 
problem for Of «A within this region is 
solved jointly with the problem for ♦»« 
in the remainder of the field. The two 
regions are fitted together by the use of 
overlapping lattices, much as is done in 
the case of a graded mesh (see reference 15). 
The only difference is that equation (A9) 
must now be utilized to make the transition 
between the two lattices at all their common 
points. It is seen from sketch (j) that 

H'=o 
B 

~l 

-r 
(**%■+** d0, = O 

Sketch (j) 

identical8J?h th!'A °n b0tJ.the »^  b°undary and sonic line are 
identical with the corresponding conditions for *. The finite-diff^r^ 

XotlTfr» th6 CalC«lati- °f 8*'A =- therefore^ Sen over directly from the previous work. 

As nearly as one can judge from experience with various lattice 

wSlToualitat8 °1 taln?d J7 the f0reg0ing prOC6SS a- quantitativ^ as 

errors from this source are probably small. Physical plane, 

Points far to the left.- ThP 
boundary conditions for t'A at 
large negative values of r\    are 
shown in sketch (k). From the 
asymptotic solution for the basic 
problem (equation (21) of refer- 
ence 3), the expression for ^'A 
along the upper boundary is found   -. 
to be 

0=0 

Sketch (k) 
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VA(T),ev) =  *0(TI,0W) = E(-TI)"
1/4

 exp ■£- (-2Tl)3/2 (AlO) 

where E is a constant. 

Because of the nature of the boundary condition (AlO), it is not 
possible to write an asymptotic solution for t'A for large negative T} 
in a single term. For this reason, the procedure previously used to 
terminate the field of calculation at some location on the left cannot 
"be applied in the present case. An alternative, procedure, somewhat more 
arbitrary in nature, can he devised by writing t'A in the form 

VA(T\,6) = *'A(TI,0W) + 5|'A(n,e) (All) 

where St'A is now defined hy 5*^(^0)=^ t1!*0) " * A ^>6^   (see 

sketch). The attenuation of t'A  in going from a point at t] = -ß 
to a point at TJ = -ß - A is then found hy treating each of the terms 
in equation (All) as an independent quantity. The attenuation of 
fiA(T\,9V)  is found from equation (AlO) hy a procedure similar to that used 
in obtaining equation (Ak) .     The result is 

rA(-ß-A,0w) = [ C1 - Ä)exp (- f; ^J+'A f-PAV." (A12) 

To obtain a corresponding equation for B+'A » it is assumed that for a 
given-value of 0 this quantity attenuates in the same manner as was 
previously found for t'B. • One thus/has from equation (Ak) 

B*A(-ß-A,0) = (l-^) exp(-it &K(-ß,0)  (A13) 

Substitution of these expressions in equation (All) for TJ - -ß - A 
gives finally   ' :- 

*'A(-ß-A,0) - ^1-1^ 

'■    { 

- A 1 exp 

itA 

20w 
exp l - T— v^2ß ) " 1 0 rA(-ß,ev) +*'A(-ß,e)h (Ai^) 

Since t»A (-ß*9w) 
is a known quantity for any given value of ß, this r 

equation can be used to terminate the field of calculation in the same 
manner as was done with equation (Ak).     The>considerable element of _ 
arbitrariness in the derivation of equation (A1*0 can be tolerated since 
the over-all solution is insensitive to changes in the left-hand portion 

of the field. 
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Solution of Finite-Difference Equations 

The techniques used to obtain a solution of the finite-difference 
equations for * \|r'A and ty'-g were the same as those described in refer- 
ence 3 for_the basic solution of if. In general, the graded lattice as 
used for %  (see fig. 2 of reference 3) was suitable for the solution 
of t'B. For i|f'A, however, different gradations were necessary with 
the smallest lattice spacing being used near the shoulder (point B of 
sketch '(e)). The value of +'B at the intersection of the shock polar 
and the sonic line was chosen as 10,000 so that the previously obtained 
values of ijr could be used to provide the initial guess for \|f'B • 

In the course of the present work, a useful technique was found for 
locating regions of relatively large error in the numerical solution. 
By use of one form of Green's theorem plus the differential equation (20\, 
it can be shown that around any contour enclosing a region in which 
equation (20) is satisfied the following relation must hold: 

/ 
(2t]Vea.T) + *' de) = 0 (A15) 

In a numerical solution the line integral in equation (A15) will not, 
except by rare coincidence, be precisely zero around any given contour. 
The amount by which it differs from zero may be taken as a rough measure 
of the adequacy of the numerical solution over the region within the 
contour.  If the entire field of calculation is subdivided into a number 
of contiguous regions, it is thus possible, by evaluating the integral 
around each of the enclosing contours, to locate regions within which 
the error is relatively high.  The solution in these regions can then be 
improved by advancing locally to a finer mesh.  This technique was found 
to be of great help in the present work. It would probably be useful in 
other elliptic boundary-value problems for which ä relation analogous to 
equation (A15) can be obtained. 
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APPENDIX B 

CALCULATION OF FLOW OVER REAR WEDGE 

IN PHYSICAL PLANE        ' .' ■ 

The procedure used to calculate the flow over the rear wedge has 
been outlined in the section METHOD OF SOLUTION. The fundamental opera- 
tion is to determine, by stepwise methods, the initial rate of movement 
of the known intersection points in the basic characteristics net. The 
methods which are used depend on the fact that these points are, by- 
virtue of the basic characteristics construction, points of fixed TJ,0 
(cf. equations (55) and (57) of reference 3). 

The first step is to determine the initial rate of movement of 
those points at which the Mach lines of the basic characteristics net 
meet on the sonic line. For this purpose, consider equations (k8),  - 
which give the initial rate of movement of a general point of fixed T),0. 
If these equations are specialized to apply to points on the sonic line, 
the following relations are obtained: 

^0 
X;(O,0) = -j-i- J t\d9 (Bla) 

ew 

(26  )1/S 

Y'(O,0) = i~^ r (Bib) 
^w 

To write equation (Bla) the path of integration in equation (48a) is 
taken along the upper boundary from 0 to B (see sketch (e) on page 21) 
and thence downward along the sonic line.  The contribution of the 
portion from 0 to B is zero by virtue of the condition (37). In apply- 
ing these equations, the value of Iw is known from the basic solution. 
The integral in equation (Bla) is evaluated by mechanical integration 
of a curve of numerically determined derivatives.  Proper allowance is 
made for the singularity at the shoulder by integrating the singular 
solution analytically. The component rates of movement of the sonic 
point at the shoulder are both seen to be zero. 

The next step in the solution is to calculate the rate of movement 
of intersection points downstream of the sonic line.  This is done by 
proceeding stepwise along consecutive downgoing characteristics. 
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Consider three typical net points as shown in sketch (l) (cf. also 
fig. k  of reference 3)-  The dashed lines represent the original posi- 
tion of the Mach lines through points a, b, and c, and the solid lines 
represent their displaced posi- '• 
tions corresponding to a small, 
finite angle of attack a. 
Since the intersection points in 
the Mach net are points of fixed 
T),0, the components of their 
displacement are given by aX' 
and aY'. The slope of each segment 
of Mach line is taken, in accord 
with the procedures of refer- 
ence 3, as the average of the 
slopes calculated at the two end 
points. The slope calculated at 
each end point depends, in turn, 
only on the value of y\    at that 
point (cf. equation (5^) of 
reference 3). 

* 
It is desired now to deter- 

mine X« and Y» at point c in Sketch (l) 
terms of X' and Y' at points a 
and b.  Since the value of T| at a given net point is the same in the 
displaced and undisplaced positions, it follows from what has been said 
above that each segment of Mach line must retain its original slope 
after displacement. If this slope is denoted by m, the following 
relations are then readily obtained: 

X'c   = 
Y,a-Y'b+mbcXV-macX,a 

^c ""ac 
(B2a) 

Y'     = - mbcY'a -macY'b+macmbc (X'b -X'a ) 

Hbc " ^.c 
(B2b) 

With these relations, it is a simple matter to calculate the initial 
rates of movement of successive net points on consecutive downgoing 
characteristics. For the first characteristic to be considered, point 
b is taken at the shoulder of the profile, where X' and Y» are both 
zero. Thus, X'c and Y'c for net points on this characteristic can be 
determined solely in terms of X'a and Y'a and the slopes maC and fibc 
For the remainder of the downgoing characteristics, X'^ and Y'^ are 
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known from calculations along the characteristic immediately preceding. 
The actual calculations can he carried out in straightforward tahular 
form. 

The foregoing procedure enables the calculation of X* and Y' for 
all net points except the ones originally at the surface of the rear 
wedge. For these points, consideration must he given to the required 
•boundary condition at the surface. This "boundary condition is 

6(X,+0;a) - - (6y+a) ' (B3) 

from which it follows that 

0'(X,+O) = - 1 W 

The problem now is to determine X' and Y' at the surface of the 
wedge in such a way that equation (B^) is satisfied.  To do this equa- 
tion (53b) is first specialized to the surface of the wedge, where it 
is readily shown that X0 = Yn = 0. In view of condition (Bk), there 
results * . 

Y'(TI,-0W) = Y0(TI,-0W) '  (B5) 

The value of Y* at points originally on the surface of the wedge is 
thus fixed directly by the basic solution. The corresponding value of 
X1 can be found from a construction analogous to that of sketch (l) 
and is 

X'c = Y'a-Y'c-fiacX'a (B6) 

-Sac 

The point c is now the point originally on the surface of the wedge 
(i.e., Y'c is as given by equation (B5)), and the remaining notation 
is the same as in sketch (l). 

Application of equation (B5) requires the knowledge of Y0(T),-0W), 

which in the case of the wedge profile is equal to !/%• Evaluation 
of the latter derivative can be carried out directly from the basic 
Mach net, but the procedures are cumbersome and inaccurate. A better 
method is to use the equations of 'motion (cf. equation (6) of refer- 
ence k)  to express 0Y in terms of f\x.    Following this procedure, one 
obtains finally 

9 2fi(X,0)fi (X,+0) 
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The quantities f] and *}x which appear here are easily evaluated from 
the basic solution for the chordwise distribution of fj. 1. 

The preceding equations enable the calculation of the initial rate 
of movement X» for points originally on the surface of the rear wedge. 
The final step is to determine the corresponding distribution of lift.. 
For this purpose, equation (53a) is specialized to points on the rear 
wedge to obtain 

V(x,40) - - x'Ci^-eJ/x^-ew) 

which, in view of the boundary conditions, can be shown to be equivalent 
to 

T)»(X,+O) = - x'(T),-ew)fjx(x,+o) (B8) 

The distribution of lift is then obtained from equation (57). 
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APPENDIX C 

SOLUTION OF PROBLEM FOR COMPLETELY SUPERSONIC FLOW 

Calculation of Lift-Curve Slope and 
Center of Lift 

If conditions are such that |0^2
1/3 = 1.260 (corresponding 

to 0W^1; cf. equation (13)), then the basic flow over the profile at 
zero angle of attack is completely supersonic. The solution for the 
lift-curve slope and center of lift at a vanishingly small angle of 
attack can then be carried out analytically as follows: 

Consider a completely supersonic flow about the double-wedge profile 
at a small angle of attack.  In the physical plane the flow field has 
the well-known appearance shown on the left in sketch (m). The corre- 
sponding hodograph of the flow along the upper surface, in terms of the 

Shock 
wave 

Shock polar 

Characteristic 

*~V 

Sketch  (m) 

normalized small-disturbance variables T] and 0, is shown on the right. 
The quantities 0W and a are, as before, the half-angle of the wedge 
and the angle of attack (also normalized). Except for a small range 
of  i0 just above 1.260 (see below), flow conditions must be constant 
along each of the segments 1 and 2 of the upper surface. In the hodo- 
graph each of these segments is thus represented by a single point 
located as shown.  It is apparent that for a given value of 6V,  the 
speeds T)! and T|2, which are the primary unknowns in the problem, are 
functions solely of the angle of attack a. 
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To find the lift-curve slope and center of lift it is necessary- 
first to find the derivatives T\\ = (dTli/da)cx=o and ^'2 = (dTl2/da)a=o' 
This can "be done with the aid of the equations for the shock polar 

0 = (l-Ti)Vl+iy (Cl) 

and for the downgoing characteristic10 

0 = constant - '£  T)3/2 (C2) 

To find Vi* one must utilize the boundary condition 0X = 0W - a. 
Substitution of this condition into equation (Cl) provides the following 
implicit equation for T^: 

©w - a = ,(1-TI1)«/1+TI1 (C3) 

Differentiation of this equation gives 

da   1+3T)! 

.  dTli   2^/l+Tl! 

From this it follows that 

2V1+TÜ 

where, as in the text, the bars denote the value of r^ at a = 0. 
The value of r\      can be found in terms of the parameter ©v by solving 
equation (C3) for T)-,^ with a set equal to zero. The result, obtained 
through standard methods for the solution of cubic equations, is 

Jlß.  0W ; ■■; 
\  = - — — + 1 C5) 
1    2 cosi^ 

3 

where 

q> = arc cos ■ft/?*) 
Compare equation (53) of reference 3- 
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To find Tj'g, equation (C2) for the downgoing characteristic is 
first specialized so as to pass through the point 1. This gives 

e = (ew-a)"+'££ (v3/* - n3/2) 

Substitution of the boundary condition 02 = - 0W - a then provides 
the result that 

T\2 =   \i)i 
3/2 

«/r ?W 
2/3 

Taking the derivative with respect to a, one obtains finally at a = 0 

n« = 
T) 

1/2 

c ,.3/a+ _3_evV/3 
Vi (c6) 

vhere TI'X is given by equation (ck)  and fj  by equation (C5) • 

Since the value of n'  is constant on. each segment of the profile, 
the lift-curve slope is easily found from equation (57) and is 

[(7+D(t/c)]1/3(^)  =2(2ew)1/3(Tj'1+v2) 
>   -a=o 

Substitution from equation (c6) gives 

[(7+l)(t/c)]
1/3 (^)a_o ■ - 2(2ev)1/3r1 

1/2 

1 + 

(S 
3/2+ _3_ e   \V3 

(CT) 

The moment-curve slope, for moments taken about the leading edge, is 
found to be 

\ day N   Sri—, 

or 

[(r+i)(t/=>]1/3(^0    --i(^)1/3(V1+ .»•.) 

^V2 

a=o 

^iHt/c^W^  ..'i'^)1^ 
\ Wo- a=o 

1 + 

V*#*) V3 
(C8) 
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The position of the center of lift is given accordingly "by 

®i- 
1 + 

 . «=ü = £ x  i :         (C9) 
(dcz/da)^  4 fix1/2 

1 + 

[^x3/S+ (3V^)^]1/3 

In equations (C7) and (C8), the first term inside the brackets repre- 
sents the contribution of the front wedge, the second term that of the 
rear. 

Equations (C7) and (C9) are the "basis for the curves shown in 
figures 5 and 7 for values of  go^1.260. The results show certain 
curious features when the flow over the front wedge is just sonic 
(i.e., \=0,  ^Hr^j g0=1.26o). These are as follows: 

(a) The lift contributed by the rear wedge is zero (see equa- 
tion (C7). 

(b) The center of lift is at the quarter-chord point (follows 
from statement (a) plus the condition of uniform lift on the front 
wedge; see also equation (C9))« 

(c) The rate of change with respect to g  is infinite both for 
the lift-curve slope of the complete profile and for the position of 
the center of lift (follows from differentiation of equations (C7) 
and (C9)). 

These'results are associated in every case with the hehavior of the lift 
calculated for the rear wedge. 

Estimation of Lower Limit for Constant Speed 
Along Rear Wedge 

The features just enumerated, though having a certain curiosity in 
themselves, cannot be accepted as completely correct. Because of inter- 
action effects between the shock wave from the bow and the expansion 
fan from the shoulder, the fundamental condition of constant speed at 
the surface of the profile will not be satisfied along the rear wedge 
until the value of  £0 is somewhat greater than 1.260. Until then, 
disturbances reflected from the shock wave will reach the rear wedge 
and cause a slight decrease in speed toward the trailing edge. This 
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effect will cease when the forwardmost reflected Mach wave just touches 
the trailing edge. The exact value of |n at which this condition will 
be met is difficult to determine 
mated as follows: 

An upper bound can, however, be esti- 

Consider the basic flow field (a=0) over the upper half of the 
profile when the first reflected Mach wave just strikes the trailing 
edge. Sketch (n) shows such a flow field as it would appear in tran- 
sonic similarity form (cf. pp. 12-13 of reference 2). In drawing the 
sketch a special assumption has been introduced beyond those implicit 
in the small-disturbance theory; namely, that the first reflected Mach 

Shock wave 

First Mach wave 
of expansion fan 

Assumed locatioh 
of first reflected 
Mach wave 

Sketch (n) 

wave is straight and has an angle of inclination |a equal to that of 
the first wave in the expansion fan. With this assumption, the corre- 
sponding value of  |0 is easily determined. Since the reflected wave 
must actually be curved downstream, the value so determined will be 
greater than the correct value for the required condition. 

On the basis of sketch (n), the following equation can be written 
between the shock angle X and the Mach angle n: 

tan X = — tan p. (CIO) 

A relation between the shock angle X. and the speed fj1 in the region 
behind the shock can be obtained from equation (C3) and the known prop- 
erties of the shock polar.  The result is 
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tan X  ss 

An analogous expression for the Mach angle \x    is given by equation (54) 
of reference 3 and- is 

(2S„)1/3 
tan |j. = ———  

Substitution of these relations into equation (CIO) ana solution for f). 
gives 

*"« 

.The accompanying value of 0V, found from equation (C3) with a=0, is 

ew = 0.9685 

This corresponds, according to equation (13), to 

i0 =  1'287 (Cll) 

Thus, for values of |Q between 1.2Ö0 and some limit less than 1.287, 
the results of equations (C7), (C8), and (C9) are not exact insofar as 
the contribution of the rear wedge is concerned. It can be reasoned 
that in this range an exact solution would indicate more lift for the 
rear wedge than does the present analysis. 
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TABLE I.- VALUES OF V'B FOR 0W = 1.6 Uo= =0.9 21) 

-n e +'B "1. e *'B -1 9 *'B -1 e *'B 

0 1.5 199 0.1 1.1 4592 0.45 1.25 1699 1.1 0.3 316 
1.4 531 1.075 5642 1.2 2012 .2 304 
1.3 1018 1.05 7132 1.15 2332 .1 296 
1.25 136k 1.0436 7621 1.1 2629 0 . 294 
1.2 1826 1.0754 2755 
1.15 2484 .125 1.125 3973 1.2 1.4 117 
1.125 2932 1.1 4764 •50 1.5 397 1,2 215 
1.1 350U 1.075 5821 1.4 817 1.0 280 
1.075 4272 1.0523 7131 1.3 1277 .8 308 
1.0625 4773 1.2 1766 .7 311 
1.05 5375 .15 1.25 1933 1.1 2207 .6 308 
1.375 6109 1.2 2563 1.0607 2324 •5 302 
1.025 7040 1.15 3470 .4 294 
1.0125 8267 1.125 

1.1 
4084 
4870 

.6 1.5 
1.4 

332 
669 

• 3 
.2 

287 
281 

.0125 1.0625 5003 1.075 5897 1.3 1008 .1 277 
1.05 5644 1.0603 6662 1.2 1326 0 275 
1.0375 6433 1.1 1568 
1.025 744l .175 1.125 4l44 1.0119 1650 1.3 .6 258 
1.0125 8782 1.1 4902 •5 258 
1.0062 9656 1.075 

1.0673 

5868 
6221 

.7 1.5 
1.4 

263 
519 

.4 
'•3 

256 

253 
.025 1.125 3173 1.3 763 .2 251 

1.10 3805 .2 1.5 392 1.2 974 .1 249 
1.075 4666 1.4 880 1.1 1122 0 248 
1.0625 5228 1.3 1570 1.0 1173 
1.05 5909 1.25 2047 .9311 1145 1.4 1.4 67 
1.0375 6751 1.2 2684 1.2 127 
1.025 7833 1.15 3570 .8 1.4 388 1.0 172 
1.0121 9339 1.125 

1.1 
4150 
4862 

1.2 
1.1 

711 
812 

..8 
.6 

201 
215 

.0375 1.0625 
1.05 

5447 
6165 

1.0733 5807 1.0 
.9 

855 
837 

.4 

.2 
220 
221 

1.0375 7057 .225 1.125 4103 0 221 
1.025 8205 1.1 4755 .8032 .8 767 
1.0179 9025 1.0784 5420 

.8581 .7 603 
1.6 1.4 

1.2 
41 
78 

.05 1.25 1573 .25 1.25 2097 1.0 109 
1.2 2105 1.2 2704 • 9 1.0 633 .8 133 
1.15 2875 1.15" 3508 .9 636 .6 149 
1.125 3407 1.125 4008 .8 608 .4 158 
1.1 4097 1.1 4589 .7 557 .2 163 
1.075 5041 I.O825 5046 0 164 
1.0625 5657 • 9003 .6 497 
1.05 6407 • 275 1.125 3872 1.8 1.4 26 
1.0375 7343 1.1 4383 1.2 50 
1.023k 8729 I.O856 4707 

.9331 • 5 426 
1.0 
.8 

71 
88 

.0625 1.0625 5854 • 3 1.5 438 .6 101 
1.05 6630 1.4 953 .9583 .4 375 .4 110 
1.0375 7601 1.3 1635 .2 115 
1.0288 8440 1.25 

1.2 
2077 
2625 

• 9770 • 3 .339 0 117 

.075 1.125 
1.1 

3625 
4365 

1.15 
1.1 

3306 
4138 

•9899 .2 317 2.0 1.4 
1.2 

16 
31 

1.075 5374 1.0877 4361 • 9975 .1 ' 304 1.0 45 
I.0625 6034 .8 57 
1.05 6830 ■ 35 1.25 1995 1.0 1.4 212 .6 66 
1.0375 7824 1.2 2466 1.2 384 .4 73 
1.0339 8158 1.15 

1.1 
3012 
3622 

1.0 

• 9 

478 
490 

.2 
0 

77 
78 

.0875 I.0625 
1.05 

6194 

6999 

1.0884 3766 .8 
.7 

482 
460 

1.0388 7889 .4 1.5 
1.4 

438 
926 

.6 

. -5 

429 
396 

.1 1.5 
1.4 

1.3 

307 
725 
1336 

1.3 
1.25 
1.2 

1515 
1864 
2253 

.4 
0 

364 
301 

1.25 1769 1.15 2675 1.1 .8 386 
1.2 2360 1.1 3105 .7 379 
1.15 3223 1.0244 3231 .6 365 
1.125 3818 

 L 

• 5 
.4 

348 

3il 1 
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TABLE II.- VALUES OF *'A FOR 9yf = l.< 5 (io-0-9 21) 

-n e -*'A -1 a -+'A -1 e -*'A -n e -+A 
0 1.6 0 O.O625 1.6 2095 0.1375 1.6 3116 0.25 1.25 1877 

1.5875 1211 1.5875 2086 1.5875 2994 1.20 1664 
1.575 1489 1.575 2135 1.575 2903 1.15 1418 
1.5625 161+9 1.5625 2179 1.5625 2839 1.1 1115 
1.55 1757 1.55 2210 1.55 2774 1.0825 988 
1.5375 1838 1.5375 2230 1.5375 2723 
1.525 1891* 1.525 ' 2243 1.525 2677 .300 1.6 4206 
1.5125 1934 1.5125 2246 1.5125 2635 1.55 3629 
1.50 1967 1-5 3195 
1.475 2007 .075 1.6 2295 .15 1.6 3249 1.45 2857 
1.45 2022 1.5875 2257 1.575 3016 1.4 2581 
1.1*25 2014 1.575 2269 1.55 2863 1.35 2343 
1.4 1993 1.5625 2290 1.525 2748 1.3 2129 
1.35 1930 1.55 2304 1.50 2649 1.25 1925 
1.3 1844 1.5375 2312 1.475 2559 1.2 1719 
1.25 1737 1.525 2315 1.45 2472 1.15 • 1497 
1.20 1603 1.5125 2310 1.425 2386 1.1 1251 
1.15 1431 1.5 2303 1.4 2304 1.0877 1186 
1.10 1184 1.475 2279 1.35 2141 
1.05 790 1.45 2244 1.3 1977 .35 1.6 4294 

1.425 2199 1.25 1802 1-55 3721 
.0125 1.6 937 1.2 1602 1.5 3278 

1.5875 1380 .0875 1.6 2478 1.15 1348 1.45 2926 
1.575 1614 1.5875 2419 1.1 997 1.4 2637 
1.5625 1753 1.575 2403 1.0063 582 1-35 2391 
1.55 1846 1.5625 2401 1.3 2174 
1.5375 1914 1.55 2399 .175 1.6 3486 1.25 1974 
1.525 1962 1.5375 2394 1.575 3224 1.2 1782 
1.5125 1995 1.525 2387 1.55 3034 1.15 1593 

1.5125 2375 1.525 2886 1.1 1405 
.025 1.6 1325 1.50 2761 1.0884 1362 

1.5875 1553 .1 1.6 2650 1.475 2650 
1.575 1740 1.5875 2573 1.45 2547 .4 ' 1.6 .4259 
1.5625 1857 1.575 2534 1.425 2449 1.55 3724 
1.55 1935 1.5625 2512 1-5 3297 
1-5375 1991 1.55 2494 .2 1.6 3690 1.45 2950 
1.525 2030 1.5375 2477 1.575 3408 1.4 2662 
1.5125 2057 1.525 2460 1.55 3190 1.35 2419 
1.50 2078 1.5125 2440 1.525 3015 1.3 2207 
1.U75 2097 1.50 2418 1.50 2867 1.25 2017 
l.<*5 2096 1.475 2372 1.475 2737 1.2 1845 
1.425 2075 1.45 2319 1.45 2620 1.15 1688 

1.425 2261 1.425 2510 1.1 1553 
.0375 1.6 1623 1.40 2198 1.4 2407 1.0844 1578 

1.5875 1731 1.35 2069 1.35 2213 
1.575 1869 1.3 1930 1.3 2027 -^ 1.6 4114 
1.5625 1962 1.25 1775 1.25 1836 1-55 3643 
1.55 2025 1.20 1591* 1.2 1624 1-5 3252 
1.5375 2069 1.15 1360 1.15 1366 1.45 2926 
1.525 2100 1.1 1026 1.1 .1025 1.4 2653 
1.5125 2119 1.05 386 1.0733 786 1.35 

1.3 

2421 
2221 

.05 1.6 1874 .1125 1.6 2816 .225 1.6 3862 1.25 2046 
1.5875 1911 1.5875 2721 1.575 3568 1.2 I896 
1-575 2000 1.575 2661 1-55 3329 1.15 1767 
1.5625 2069 1.5625 2621 1.525 3132 1.1 I669 
1-55 2117 1.55 2589 1 50 2964 1.0754 1637 
1.5375 2149 1.5375 2560 1.475 2819 
1 525 2171 1.525 2533 1.45 2688 • 5 1.6 3886 
1.5125 2182 1.5125 2505 1.425 2568 1-55 3489 
1.50 2190 1.5 3148 
1.475 2188 .125 1.6 2972 .25 1.6 4004 1.45 2856 
1.45 2169 1.5875 2862 1-575 3702 1.4 2607 
1.425 2137 1.575 2784 1-55 3449 1-35 2394 
l'.4 2094 1.5625 2728 1.525 3236 1.3 2211 
1.35 1999 1-55 ?682 1-5 3053 1.2 1922 
1.3 1886 1.5375 2642 1.475 2894 1.1 1743 
1.25 1755 1.525 2605 1.45 2751 1.0607 1717 
1.20 1596 1.5125 2570 1.425 2622 
1.15 1391 1.50 2534 1.4 2502 • 55 1.6 3603 
1.10 1096 1.475 2465 1-35 2282 1-55 3280 
1.05 619 1.450 2396 1-3 2079 1-5 2994 

1.425 2324 

• 
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TABLE II.- CONCLUDED 

-1 " e -n -1 9 -+V -1 e -+v 
• 55 1.1*5 

1.4 
2742 

2525 

1.1 1.6 

1.5 
727 
809 

1.6 0 389 

1.35 2337 1.4 860 1.8 1.6 50 
1.3 2174 1.3 

1.2 
887 
897 

1.4 
1.2 

115 
168 

.6 1.6 3283 1.1 894 1.0 209 
1.5 2801 1.0 881 .8 239 
1.4 2412 •9 861 .6 260 
1-3 2110 .8 835 .4 273 
1.2 1889 .7 805 .2 280 
1.1 1751 .6 771 0 283 
1.0119 1710 • 5 736 

.4 704 2.0 1.6 30 
.7 1.6 2588 • 3 676 1.4 69 

1.5 2345 .2 654 1.2 103 
1.4 211? .1. 641 1.0 132 
1.3 193 2 0 637 .8 155 
1.2 1751* .6 172 
1.1 1643 1.2 1.6 510 .4 184 
1.0 1576 1-5 593 .2 191 

• 9311 1544 1.4 

1.3 
653 
693 

0 193 

.8 1.6 

1.5 
1.4 
1.3 
1.2 
1.1 
1.0 

• 9 

1950 
1873 
1766 
1655 
1555 
1473 
l4o6 
1345 

1.2 
1.1 
1.0 

• 9 
.8 
.7 
.6 
• 5 
.4 

718 
730 
733 
728 
717 
701 
682 
663 
644 

.8032 .8 1266 • 3 
.2 

628 
615 

.8581 .7 1086 .1 
0 

607 
604 

• 9 1.6 1438 

1-5 1449 1.3 1.6 358 
1.4 1424 1-5 434 
1.3 1380 1.4 494 
1.2 1329 1.3 539 
1.1 1276 1.2 571 
1.0 1224 1.1 592 

• 9 1169 1.0 604 
.8 1107 • 9 610 
.7 1033 .8 

• 7 
610 
605 

• 9003 .6 951 .6 
• 5 

597 
588 

• 9331 • 5 848 .4 
• 3 

579 
571 

.9583 .4 771 .2 
.1 

564 
560 

•9770 • 3 717 0 559 

.9899 .2 677 1.4 1.6 
1.4 

250 
372 

• 9975 .1 658 1.2 
1.0 

450 
494 

1.0 1.6 

1.5 
1.4 

1.3 
1.2 
1.1 

1030 
1092 
1117 
1118 
1103 
1079 

.8 

.6 

.4 

.2 
0 

514 
517 
512 
506 
504 

1.0 1047 1.6 1.6 120 
•9 1009 1.4 209 
.8 965 1.2 277 
.7 914 1.0 325 
.6 860 .8 356 
• 5 805 .6 374 
.4 754 .4 384 

0 650 .2 388 
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